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Abstract

A new cross-spectral analysis procedure is proposed for the parametric estimation of the relationship
between two time sequences in the frequency domain. In this method, the two observable outputs are
modeled as a pair of autoregressive moving-average and moving-average (ARMAMA) models under the
assumption that the two outputs are driven by a common input and independent ones simultaneously.
Cross- and auto-power spectral densities (PSDs) of a pair of ARMAMA models can be derived as forms of
rational polynomial functions. The coefficients of these functions can be estimated from the cross-
correlation function or the auto-correlation functions of the two observed sequences by using the method
presented in this paper. The main advantage of the present procedure is that the physical parameters of an
unknown system can be easily estimated from the coefficients of the cross- and auto-PSD functions. To
illustrate the effectiveness of the proposed procedure, numerical and practical examples of a mechanical
vibration problem are analyzed. The results show that the proposed procedure gives accurate cross- and
auto-PSD estimates. Moreover, the physical properties of the unknown system can be well estimated from
the obtained cross- and auto-PSDs.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Cross-spectral analysis is a fundamental and powerful procedure to investigate an unknown
relationship between two time series in the frequency domain. It is especially effective for the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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estimation of correlated periodic components between two measured records contaminated by
uncorrelated noises. Thus, to take advantage of the feature, the cross spectrum is widely employed
in many engineering problems; e.g., for the analysis of feedback systems [1], atmospheric problems
[2], time delay estimation of spatial sensors [3], blind equalization in communications [4], and
system identification of mechanical vibration systems [5]. In such multivariate problems when the
input cannot be specified, the authors believe cross-spectral analysis is more effective than auto-
spectral analysis or transfer function-based analysis, because the unknown relationship of
sequences can be evaluated without a priori definition of input and output, which is required in
transfer-based analysis. Whereas in Refs. [1–5] the cross-spectral density is computed in a non-
parametric way, by using the Fast Fourier Transform FFT, in this paper, a parametric approach
will be developed for cross-spectral analysis.
For estimating the auto-power spectral density (auto-PSD) in the parametric approach, various

schemes have been proposed based on scalar linear differential models such as autoregressive
(AR) models or autoregressive moving-average (ARMA) models [6–14]. Additionally, for
estimating the transfer function between two sequences, there are various schemes based on AR
models with the extra input (ARX) or autoregressive moving-average models with the extra input
(ARMAX) [15,16]. Using these parametric schemes, one can estimate the auto-PSD or transfer
function with coefficients of rational polynomial functions. From these coefficients, the physical
parameters can often be identified directly. Therefore, in such types of engineering problems, these
parametric schemes are useful for system identification; e.g., in mechanical vibration problems, by
using the linear differential model, the eigenvalues and eigenvectors of a system can be estimated
from the vibration response data [17].
While there are considerable studies on auto-PSD or transfer function estimates, very little

attention has been paid to the parametric approach to cross-PSD estimates. In practice, the cross-
PSD is often computed by a non-parametric procedure such as the FFT [18,19]. For a
multivariate system, conventional schemes of a scalar linear differential model have been extended
to vector-based schemes [20–23]. However, these vector-based schemes are complicated in such
extensions, because unknown parameters must be treated as matrix representation. Moreover, it is
generally difficult to explain physical meanings of the unknown system from the obtained
parameter matrices, even if the vector linear differential equations are well estimated. On the other
hand, the scalar scheme can be handled rather easily, and the multivariate system can be analyzed
in the repetitive use of the scalar scheme.
We propose a parametric approach for the analysis of the cross- and auto-PSDs, using a

pair of linear differential models for the two output sequences. The models are composed
of MA terms added to an ARMA model, therefore, they are called the autoregressive
moving-average and moving-average (ARMAMA) model. Specifically, throughout the paper, the
cross- and auto-PSDs will be treated as two-sided spectral density functions SxyðoÞ and SxxðoÞ
defined by [24]

SxyðoÞ ¼
Z 1

�1

RxyðtÞe�jot dt and SxxðoÞ ¼
Z 1

�1

RxxðtÞe�jot dt; ð1Þ

where o is the circular frequency; j ¼
ffiffiffiffiffiffiffi
�1

p
; RxyðtÞ and RxxðtÞ are the covariance functions

associated with stationary random variables xðtÞ and yðtÞ: The covariance functions of xðtÞ and
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yðtÞ will be also defined by

RxyðtÞ ¼ E½xðtÞyðt þ tÞ	 and RxxðtÞ ¼ E½xðtÞxðt þ tÞ	; ð2Þ

where E½
	 denotes the expectation operator on t:
The outline of the paper is as follows. In Section 2, the definition of the ARMAMA model and

its differential form are presented. In Section 3, the representation of the cross-PSD between the
two ARMAMA models is developed and also a procedure for estimation of the cross-PSD. In
Section 4, the authors derive the representation and a procedure for estimation of the auto-PSD
within the use of the correlated terms given by the computation of the cross-PSD in Section 3. In
Section 5, the authors discuss the structural difference between the ARMAMA model and
multivariate linear difference models. Section 6 presents some numerical examples to illustrate the
application of the proposed procedure. Furthermore, the practicality of the procedure will be
discussed in Section 7 and Section 8 concludes the paper.
2. Definition of ARMAMA model

Let xðtÞ and yðtÞ be observable output sequences of two stationary processes. The ARMAMA
models are defined in discrete time t as

xðtÞ ¼
Bxðz

�1Þ

Axðz�1Þ
eðtÞ þ

Dxðz
�1Þ

Cxðz�1Þ
exðtÞ ð3Þ

¼

Pmb

j¼0 bxðjÞz
�jPma

j¼0 axðjÞz�j
eðtÞ þ

Pmd

j¼0 dxðjÞz
�jPmc

j¼0 cxðjÞz�j
exðtÞ; ð4Þ

yðtÞ ¼
Byðz

�1Þ

Ayðz�1Þ
eðtÞ þ

Dyðz
�1Þ

Cyðz�1Þ
eyðtÞ ð5Þ

¼

Pnb

j¼0 byðjÞz
�jPna

j¼0 ayðjÞz�j
eðtÞ þ

Pnd

j¼0 dyðjÞz
�jPnc

j¼0 cyðjÞz�j
eyðtÞ; ð6Þ

axð0Þ ¼ 1; ayð0Þ ¼ 1; cxð0Þ ¼ 1; cyð0Þ ¼ 1; ð7Þ

where eðtÞ; exðtÞ and eyðtÞ are the unobservable inputs of white noise sequences with zero mean and
unit variance, which are mutually independent; z is the unit-delay operator; axðjÞ; ayðjÞ; cxðjÞ and
cyðjÞ are the AR coefficients; bxðjÞ; byðjÞ; dxðjÞ and dyðjÞ are the MA coefficients. Fig. 1 shows a
block diagram of the ARMAMA models.
In Eqs. (3) and (5), both outputs xðtÞ and yðtÞ are driven by the common input eðtÞ given as the

first term of the right-hand sides in each equation; i.e., these terms can represent correlated
components between xðtÞ and yðtÞ: Additionally, each output is also driven by different inputs
exðtÞ or eyðtÞ given as the second terms of Eqs. (4) or (6), which can represent uncorrelated
components between two outputs. As described in the next section, in the analysis of cross-PSD
the first term in Eqs. (4) and (6) plays an important role, and the second term vanishes due to the
assumption of mutual independence between eðtÞ; exðtÞ and eyðtÞ: On the other hand, in the
analysis of auto-PSD both the first and the second terms in Eqs. (4) and (6) are required.
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ex(t)

ey(t)

e(t)

x(t)

y(t)

Bx(z-1) Ax(z-1)

By(z-1) Ay(z-1)

Dx(z-1) Cx(z-1)

Dy(z-1) Cy(z-1)

Fig. 1. Block diagram of the ARMAMA model.
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Eqs. (4) and (6) can be rewritten in the linear difference forms asXmc

j¼0

Xma

k¼0

cxðjÞaxðkÞxðt � j � kÞ

¼
Xmc

j¼0

Xmb

k¼0

cxðjÞbxðkÞeðt � j � kÞ þ
Xmd

j¼0

Xma

k¼0

dxðjÞaxðkÞexðt � j � kÞ; ð8Þ

Xnc

j¼0

Xna

k¼0

cyðjÞayðkÞyðt � j � kÞ

¼
Xnc

j¼0

Xnb

k¼0

cyðjÞbyðkÞeðt � j � kÞ þ
Xnd

j¼0

Xna

k¼0

dyðjÞayðkÞeyðt � j � kÞ: ð9Þ

Each model in Eqs. (8) and (9) consists of one AR term and two MA terms; therefore, the authors
propose to call them ARMAMA models.
3. Computation of cross-PSD based on ARMAMA model

This section develops the procedure for the cross-PSD estimation of the ARMAMA model.
Firstly, using the impulse response equivalent to the ARMAMA model, the general
representation of the cross-PSD will be derived. In the representation, the cross-PSD is expressed
as a rational function of the AR and the MA coefficients. However, it is difficult to estimate the
MA coefficients by using only the observed outputs. This is because both the time sequence and its
coefficients in the MA terms are unknown, and one must solve highly nonlinear functions to
estimate these unknown parameters [22,25]. Some iterative schemes have been proposed for
solving the highly nonlinear functions of the ARMA model; e.g., the bootstrap method or the
maximum likelihood estimation [16,25], but these schemes cannot be easily handled in practice.
Thus, to take an easier approach, we will rewrite the simple representation of the cross-PSD



ARTICLE IN PRESS

K. Kanazawa, K. Hirata / Journal of Sound and Vibration 282 (2005) 1–35 5
without the use of the MA coefficients; i.e., the cross-PSD is rewritten as a function of the AR
coefficients and the cross-correlation function of the observed outputs. Finally, a set of equations
for the AR coefficients will be shown.

3.1. Derivation of general cross-PSD form

Eqs. (3) and (5) can be alternatively expressed by using the impulse response functions below:

xðtÞ ¼ Hbxðz
�1ÞeðtÞ þ Hdxðz

�1ÞexðtÞ; ð10Þ

yðtÞ ¼ Hbyðz
�1ÞeðtÞ þ Hdyðz

�1ÞeyðtÞ; ð11Þ

where

Hbxðz
�1Þ ¼

X1
j¼0

hbxðjÞz
�j �

Bxðz
�1Þ

Axðz�1Þ
; ð12Þ

Hbyðz
�1Þ ¼

X1
j¼0

hbyðjÞz
�j �

Byðz
�1Þ

Axðz�1Þ
; ð13Þ

Hdxðz
�1Þ ¼

X1
j¼0

hdxðjÞz
�j �

Dxðz
�1Þ

Cxðz�1Þ
; ð14Þ

Hdyðz
�1Þ ¼

X1
j¼0

hdyðjÞz
�j �

Dyðz
�1Þ

Cyðz�1Þ
ð15Þ

and fhbxðjÞg; fhbyðjÞg; fhdxðjÞg and fhdyðjÞg are the impulse response sequences of the transfer
functions Bxðz

�1Þ=Axðz
�1Þ; Byðz

�1Þ=Ayðz
�1Þ; Dxðz

�1Þ=Cxðz
�1Þ and Dyðz

�1Þ=Cyðz
�1Þ; respectively.

Eqs. (10) and (11) can be rewritten in difference form as

xðtÞ ¼
X1
j¼0

hbxðjÞeðt � jÞ þ
X1
j¼0

hdxðjÞexðt � jÞ; ð16Þ

yðtÞ ¼
X1
k¼0

hbyðkÞeðt � kÞ þ
X1
k¼0

hdyðkÞeyðt � kÞ: ð17Þ

The cross-correlation function RxyðtÞ of xðtÞ and yðtÞ is given from Eqs. (16) and (17) as

RxyðtÞ ¼ E½xðtÞ yðt þ tÞ	

¼
X1
j¼0

X1
k¼0

hbxðjÞhbyðkÞE½eðt � jÞ eðt þ t� kÞ	

¼
X1
j¼0

hbxðjÞhbyðj þ tÞ: ð18Þ
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In the derivation of the equation above, the assumption that eðtÞ; exðtÞ and eyðtÞ are mutually
independent is used.
Then, the corresponding cross-PSD Sxyðz

�1Þ between xðtÞ and yðtÞ is given by the
Wiener–Khinchin theorem as

Sxyðz
�1Þ ¼

X1
t¼�1

RxyðtÞz�t: ð19Þ

Since the impulse responses hbxðtÞ and hbyðtÞ are equal to zero for to0; substitution of Eq. (18)
into Eq. (19) leads to the equation below:

Sxyðz
�1Þ ¼

X1
j¼0

X1
t¼�j

hbxðjÞhbyðj þ tÞz�t: ð20Þ

Let k ¼ j þ t and substitute Eqs. (12) and (13) into Eq. (20), then the cross-PSD between xðtÞ and
yðtÞ can be obtained as follows:

Sxyðz
�1Þ ¼

X1
j¼0

X1
k¼0

hbxðjÞhbyðkÞz
�ðk�jÞ

¼ HbxðzÞHbyðz
�1Þ

¼
BxðzÞByðz

�1Þ

AxðzÞAyðz�1Þ
: ð21Þ

3.2. Simple representation of cross-PSD without MA coefficient

To estimate the cross-PSD from Eq. (21), the AR and MA coefficients axðjÞ; ayðjÞ; bxðjÞ and byðjÞ

are required to be determined. In the case of ARMA model, Kinkel et al. [6], Kaveh [7], Kay [9]
have proposed the procedure of auto-PSD estimation without determining of the MA coefficients.
In a similar way, the cross-PSD in Eq. (21) can be modified into an alternative form without using
MA coefficients.
The numerator in Eq. (21) can be expressed as

BxðzÞByðz
�1Þ ¼

Xmb

k¼0

bxðkÞz
k
Xnb

j¼0

byðjÞz
�j

¼
Xnb

l¼�mb

Xmb

k¼0

bxðkÞbyðk þ lÞz�l : ð22Þ

Note that j ¼ k þ l; byðjÞ ¼ 0 for jo0 or for nboj:
To simplify the derivation below, Eqs. (8) and (9) are rewritten by using two sets of new

instrumental variables uðtÞ; vðtÞ and rðtÞ; sðtÞ:Xma

k¼0

axðkÞðxðt � kÞ � uðt � kÞÞ ¼
Xmb

k¼0

bxðkÞeðt � kÞ � rðtÞ; ð23Þ
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Xna

k¼0

ayðkÞðyðt � kÞ � vðt � kÞÞ ¼
Xnb

k¼0

byðkÞeðt � kÞ � sðtÞ ð24Þ

and Xmc

j¼0

cxðjÞuðt � jÞ ¼
Xmd

j¼0

dxðjÞexðt � jÞ; ð25Þ

Xnc

j¼0

cyðjÞvðt � jÞ ¼
Xnd

j¼0

dyðjÞeyðt � jÞ: ð26Þ

From the left-hand side of Eqs. (23) and (24), the cross-correlation function RrsðlÞ of rðtÞ and
sðtÞ can be expressed as

RrsðlÞ ¼ E½rðtÞ 
 sðt þ lÞ	

¼
Xma

k¼0

Xna

j¼0

axðkÞayðjÞE½ðxðt � kÞ � uðt � kÞÞðyðt þ l � jÞ � vðt þ l � jÞÞ	

¼
Xma

k¼0

Xna

j¼0

axðkÞayðjÞRxyðl þ k � jÞ; ð27Þ

where RxyðtÞ is the cross-correlation function of xðtÞ and yðtÞ; which can be estimated from the
time-series observation.1Note that the cross-correlation functions RxvðtÞ of xðtÞ and vðtÞ; RyuðtÞ of
yðtÞ and uðtÞ and RuvðtÞ of uðtÞ and vðtÞ equal to zero in all t: (See Eqs. (A.3)–(A.5) in Appendix A.)
Next, from the right-hand side of Eqs. (23) and (24), the cross-correlation function RrsðlÞ can

also be also expressed as

RrsðlÞ ¼ E½rðtÞ sðt þ lÞ	

¼
Xmb

k¼0

Xnb

j¼0

bxðkÞbyðjÞE½eðt � kÞ eðt þ l � jÞ	

¼
Xmb

k¼0

bxðkÞbyðk þ lÞ: ð28Þ

Then substituting Eq. (28) into Eq. (22), the alternative representation of cross-PSD in Eq. (21)
can be obtained:

Sxyðz
�1Þ ¼

Pnb

l¼�mb
RrsðlÞz

�l

AxðzÞAyðz�1Þ
: ð29Þ

Since RrsðlÞ can be computed for l ¼ �mb; . . . ; nb by using Eq. (27), the cross-PSD given by
Eq. (29) can be evaluated without using MA coefficients.
1In the examples of Sections 5 and 6, the cross-correlation function of xðtÞ and yðtÞ is estimated below:

RxyðtÞ ¼
1

N � 1

XN�1

l¼1

xðlÞ yðl þ tÞ:
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3.3. Computation of AR coefficient

Multiplying both sides of Eq. (23) by yðt � lÞ and taking expectation on t; we can obtain the
equation below: Xma

k¼0

axðkÞRxyðk � lÞ ¼
Xmb

k¼0

bxðkÞhbyðk � lÞ: ð30Þ

Note that the cross-correlation functions RyuðtÞ of yðtÞ and uðtÞ and RyeðtÞ of yðtÞ and eðtÞ satisfy
the relationship RyuðtÞ ¼ 0 and RyeðtÞ ¼ hbyð�tÞ (see Eqs. (A.4) and (A.7) in Appendix A). For
l4mb the right-hand side of Eq. (30) equals zero, so thatXma

k¼0

axðkÞRxyðk � lÞ ¼ 0; lXmb þ 1: ð31Þ

Similarly, multiplying both sides of Eq. (24) by xðt � lÞ and taking expectation on t; we can
obtain the equation below:Xna

k¼0

ayðkÞRxyðl � kÞ ¼
Xnb

k¼0

byðkÞhbyðk � lÞ: ð32Þ

Note that the cross-correlation functions RxvðtÞ of xðtÞ and vðtÞ and RxeðtÞ of xðtÞ and eðtÞ satisfy
the relationship RxvðtÞ ¼ 0 and RxeðtÞ ¼ hbxð�tÞ (see Eqs. (A.3) and (A.6) of Appendix A). For
l4nb the right-hand side of Eq. (32) also equals zero, so thatXna

k¼0

ayðkÞRxyðl � kÞ ¼ 0; lXnb þ 1: ð33Þ

Eqs. (31) and (33) have the same form as the Yule–Walker (YW) equations for AR model or the
modified Yule–Walker equations for ARMA model. Thus, the two AR coefficient series axðjÞ and
ayðjÞ can be computed in the same way as the YW equations. As axð0Þ ¼ 1 and ayð0Þ ¼ 1 according
to Eq. (7), a sufficient set of equations for the computation of the cross-correlation function
sequence is Ax ¼ y; where

x ¼ faxð1Þ; axð2Þ; . . . ; axðmaÞg
T; ð34Þ

y ¼ f�Rxyð�mb � 1Þ;�Rxyð�mb � 2Þ; . . . ;�Rxyð�mb � neÞg
T; ð35Þ

A ¼

Rxyð�mbÞ Rxyð�mb þ 1Þ 
 
 
 Rxyðma � mb � 1Þ

Rxyð�mb � 1Þ Rxyð�mbÞ 
 
 
 Rxyðma � mb � 2Þ

..

. ..
. ..

.

Rxyð�mb � ne þ 1Þ Rxyð�mb � ne þ 2Þ 
 
 
 Rxyðma � mb � neÞ

2
66664

3
77775; ð36Þ
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for Eq. (31),

x ¼ ½ayð1Þ; ayð2Þ; . . . ; ayðnaÞ	
T; ð37Þ

y ¼ ½�Rxyðnb þ 1Þ;�Rxyðnb þ 2Þ; . . . ;�Rxyðnb þ neÞ	
T; ð38Þ

A ¼

RxyðnbÞ Rxyðnb � 1Þ 
 
 
 Rxyð�na þ nb þ 1Þ

Rxyðnb þ 1Þ RxyðnbÞ 
 
 
 Rxyð�na þ nb þ 2Þ

..

. ..
. ..

.

Rxyðnb þ ne � 1Þ Rxyðnb þ ne � 2Þ 
 
 
 Rxyð�na þ nb þ neÞ

2
66664

3
77775 ð39Þ

for Eq. (33) and ne is the number of equations.
If exact cross-correlations are given, one can solve Ax ¼ y as simultaneous equations where ne

is set to ma or na: In practice, however, it is generally necessary to compute appropriate cross-
correlation estimates from the given set of the time-series observations. Thus, to obtain the AR
coefficients axðjÞ and ayðjÞ with high accuracy, let ne be set larger than ma and na; then one can
solve it in the least square sense. For large ne; however, the solution of AR coefficient may be
unstable, because the linear dependency of Ax ¼ y is getting lower. To avoid this difficulty, the
singular value decomposition [26] is used in the numerical examples shown later.
4. Computation of auto-PSD based on ARMAMA model

In the previous section, the cross-PSD between two time series is derived. In this section, the
auto-PSD of ARMAMA model will be derived under the condition that the cross-PSD is already
obtained. Since the results concerning xðtÞ and yðtÞ have the same form, we will consider only xðtÞ
in the derivation below.
4.1. Derivation of general auto-PSD form

The auto-correlation function RxxðtÞ of xðtÞ is given using Eq. (16) as

RxxðtÞ ¼ E½xðtÞxðt þ tÞ	

¼
X1
j¼0

X1
k¼0

hbxðjÞhbxðkÞE½eðt � jÞeðt þ t� kÞ	

þ
X1
j¼0

X1
k¼0

hdxðjÞhdxðkÞE½exðt � jÞexðt þ t� kÞ	

¼
X1
j¼0

hbxðjÞhbxðj þ tÞ þ
X1
j¼0

hdxðjÞhdxðj þ tÞ: ð40Þ

Note that the inputs eðtÞ and exðtÞ are mutually independent.
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Then the auto-PSD Sxxðz
�1Þ of xðtÞ is given by

Sxxðz
�1Þ ¼

X1
t¼�1

RxxðtÞz�t: ð41Þ

Since the impulse responses hbxðtÞ and hdxðtÞ are equal to zero for to0; substitution of Eq. (40)
into Eq. (41) leads to the equation below:

Sxxðz
�1Þ ¼

X1
j¼0

X1
t¼�j

hbxðjÞhbxðj þ tÞz�t

þ
X1
j¼0

X1
t¼�j

hdxðjÞhdxðj þ tÞz�t: ð42Þ

Let k ¼ j þ t and substitute Eqs. (12) and (14) into Eq. (42), then the auto-PSD of Eq. (3) can be
obtained as follows:

Sxxðz
�1Þ ¼

X1
j¼0

X1
k¼0

hbxðjÞhbxðkÞz
�ðk�jÞ þ

X1
j¼0

X1
k¼0

hdxðjÞhdxðkÞz
�ðk�jÞ

¼ HbxðzÞHbxðz
�1Þ þ HdxðzÞHdxðz

�1Þ

¼
CxðzÞCxðz

�1ÞBxðzÞBxðz
�1Þ þ DxðzÞDxðz

�1ÞAxðzÞAxðz
�1Þ

AxðzÞAxðz�1ÞCxðzÞCxðz�1Þ
: ð43Þ
4.2. Simple representation of auto-PSD without MA coefficient

The auto-PSD given by Eq. (43) can be rewritten using the cross-PSD representation given by
Eq. (29), which is expressed without MA coefficients.
The numerator in Eq. (43) can be expressed as

CxðzÞCxðz
�1ÞBxðzÞBxðz

�1Þ þ DxðzÞDxðz
�1ÞAxðzÞAxðz

�1Þ

¼
Xmc

i¼0

Xmc

j¼0

Xmb

k¼0

Xmb

h¼0

cxðiÞcxðjÞbxðkÞbxðhÞz
�iþjþk�h

þ
Xmd

i¼0

Xmd

j¼0

Xma

k¼0

Xma

h¼0

dxðiÞdxðjÞaxðkÞaxðhÞz
�iþjþk�h

¼
Xmbþmc

l¼�ðmbþmcÞ

Xmc

i¼0

Xmc

j¼0

Xmb

k¼0

cxðiÞcxðjÞbxðkÞbxðl � i þ j þ kÞz�l

þ
Xmaþmd

l¼�ðmaþmd Þ

Xmd

i¼0

Xmd

j¼0

Xma

k¼0

þ dxðiÞdxðjÞaxðkÞaxðl � i þ j þ kÞz�l
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¼
XM

l¼�M

Xmc

i¼0

Xmc

j¼0

Xmb

k¼0

cxðiÞcxðjÞbxðkÞbxðl � i þ j þ kÞ

 

þ
Xmd

i¼0

Xmd

j¼0

Xma

k¼0

þ dxðiÞdxðjÞaxðkÞaxðl � i þ j þ kÞ

!
z�l : ð44Þ

Note that h ¼ l þ i � j þ k; cxðjÞ ¼ 0 for jo0 or for mcoj; dxðjÞ ¼ 0 for jo0 or for mdoj; and M
is the larger value of mb þ mc and ma þ md :
Let us introduce an instrumental variable wðtÞ equivalent to the both sides of Eq. (8).
From the left-hand side of Eq. (8), the auto-correlation function RwwðtÞ of wðtÞ can be

expressed as

RwwðlÞ ¼ E½wðtÞwðt þ lÞ	

¼
Xmc

i¼0

Xmc

j¼0

Xma

k¼0

Xma

h¼0

cxðiÞcxðjÞaxðkÞaxðhÞE½xðt � j � kÞxðt þ l � i � hÞ	

¼
Xmc

i¼0

Xmc

j¼0

Xma

k¼0

Xma

h¼0

cxðiÞcxðjÞaxðkÞaxðhÞRxxðl � i þ j þ k � hÞ; ð45Þ

where RxxðtÞ is the auto-correlation function of xðtÞ:
Next, by using the right-hand side of Eq. (8), RwwðtÞ of wðtÞ can also be expressed as

RwwðlÞ ¼ E½wðtÞwðt þ lÞ	

�
Xmc

i¼0

Xmb

h¼0

cxðiÞbxðhÞeðt þ l � i � hÞ þ
Xmd

i¼0

Xma

h¼0

dxðiÞaxðhÞexðt þ l � i � hÞ

 !

¼
Xmc

i¼0

Xmc

j¼0

Xmb

k¼0

Xmb

h¼0

cxðiÞcxðjÞbxðkÞbxðhÞE½eðt � j � kÞeðt þ l � i � hÞ	

þ
Xmd

i¼0

Xmd

j¼0

Xma

k¼0

Xma

h¼0

dxðiÞdxðjÞaxðkÞaxðhÞE½exðt � j � kÞexðt þ l � i � hÞ	

¼
Xmc

i¼0

Xmc

j¼0

Xmb

k¼0

cxðiÞcxðjÞbxðkÞbxðl � i þ j þ kÞ

þ
Xmd

i¼0

Xmd

j¼0

Xma

k¼0

dxðiÞdxðjÞaxðkÞaxðl � i þ j þ kÞ: ð46Þ

Then substituting Eq. (46) into Eq. (43) and using Eqs. (44) and (45), the alternative
representation of auto-PSD in Eq. (21) can be obtained:

Sxxðz
�1Þ ¼

PM
l¼�M RwwðlÞz

�l

AxðzÞAxðz�1ÞCxðzÞCxðz�1Þ
: ð47Þ

Since RwwðlÞ can be computed for l ¼ �M; . . . ;M; by using Eq. (45), the above auto-PSD could
be evaluated without the use of MA coefficients.
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4.3. Computation of AR coefficient

Multiplying both sides of Eq. (8) by xðt � lÞ and taking expectation on t; we can obtain the
equation below:Xmc

j¼0

Xma

k¼0

cxðjÞaxðkÞRxxðj þ k � lÞ

¼
Xmc

j¼0

Xmb

k¼0

cxðjÞbxðkÞhbxðj þ k � lÞ þ
Xmd

j¼0

Xma

k¼0

dxðjÞaxðkÞhdxðj þ k � lÞ: ð48Þ

Note that the cross-correlation functions RxeðtÞ of xðtÞ and eðtÞ and Rxex
ðtÞ of xðtÞ and exðtÞ

satisfy the relationship RxeðtÞ ¼ hbxð�tÞ and Rxex
ðtÞ ¼ hdxð�tÞ: (See Eqs. (A.4) and (A.7) in

Appendix A.) For l4M; the right-hand side of Eq. (48) equals zero, so thatXmc

j¼0

Xma

k¼0

cxðjÞaxðkÞRxxðj þ k � lÞ ¼ 0; lXM þ 1: ð49Þ

Here the AR coefficient axðjÞ and auto-correlation function RxxðtÞ are already known, and axðjÞ

can be computed in the process of cross-PSD evaluation by using Eqs. (34)–(36), RxxðtÞ can be
estimated from the observed output xðtÞ: Therefore, in Eq. (49), only the AR coefficients cxðjÞ are
unknown. As cxð0Þ ¼ 1 in the definition of Eq. (7), a sufficient set of equations with cxðqÞ as
unknowns are given from Eq. (49) as ½Apq	fxqg ¼ fypg; where

xq ¼ cxðqÞ; ð50Þ

yp ¼ �
Xma

k¼0

axðkÞRxxðk � pÞ; ð51Þ

Apq ¼
Xma

k¼0

axðkÞRxxðp � q � kÞ; ðp ¼ M þ 12M þ ne; q ¼ 12mcÞ ð52Þ

and ne is the number of equations.
As described in the previous section, the AR coefficients cxðjÞ can be estimated as the solution of

the equation ½Apq	fxqg ¼ fypg in the least-square sense.
5. Comparison between ARMAMA model and multivariate models

The cross- and auto-PSD can be expressed by multivariate linear difference models as well as
the ARMAMA model presented in the previous sections. For spectral estimation, however, the
ARMAMA model can be handled more easily than the multivariate models due to the structural
characteristics of the ARMAMA model, which can well separate correlated or uncorrelated
components from two time records. To explain the applicability of the spectral estimation based
on the ARMAMA model, an ARMAV model (autoregressive moving-average vector model) is
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mentioned as an example of the multivariate models, and the structural difference between the
ARMAMA model and the ARMAV model will be discussed.
Let xðtÞ and eðtÞ be observable output vectors and unobservable input vectors, the ARMAV

model can be generally expressed as [22]

Aðz�1ÞxðtÞ ¼ Bðz�1ÞeðtÞ; ð53Þ

where Aðz�1Þ and Bðz�1Þ are the AR and the MA coefficient matrices, respectively. Then the PSD
matrix of xðtÞ is given as [22]

SARMAVðz
�1Þ ¼ ðA�1

ðzÞBðzÞÞReðA
�1
ðz�1ÞBðz�1ÞÞT; ð54Þ

where SARMAVðz
�1Þ is the PSD matrix of the ARMAV model; Re is the PSD matrix of eðtÞ; A�1

ðzÞ
denotes the inverse matrix of AðzÞ: In the PSD matrix SARMAVðz

�1Þ; the diagonal and the non-
diagonal elements correspond to the auto- and cross-PSDs of xðtÞ; respectively.
To simplify the discussion below on the structural difference of the PSD forms, a two-

dimensional ARMAV model is introduced, which is given asXm

k¼0

a11ðkÞ a12ðkÞ

a21ðkÞ a22ðkÞ

 �
xðt � kÞ

yðt � kÞ

� �
¼
Xn

j¼0

b11ðkÞ b12ðkÞ

b21ðkÞ b22ðkÞ

 �
�xðt � jÞ

�yðt � jÞ

� �
; ð55Þ

where xðtÞ and yðtÞ are observable output sequences of two stationary processes; �xðtÞ and �yðtÞ are
mutually independent white noise sequences with unit variances; apqðkÞ and bpqðkÞ are the AR and
the MA coefficients. By using the relation of Eqs. (53) and (54), the PSD matrix of the two-
dimensional ARMAV model can be obtained:

SARMAVðz
�1Þ ¼

1

D
A�
22 �A�

12

�A�
21 A�

11

 �
B�
11 B�

12

B�
21 B�

22

 �
B11 B21

B12 B22

 �
A22 �A21

�A12 A11

 �
; ð56Þ

where

D ¼ ðA�
11A

�
22 � A�

12A
�
21ÞðA11A22 � A12A21Þ; ð57Þ

Apq ¼
Xn

k¼0

apqðkÞz
�k; A�

pq ¼
Xn

k¼0

apqðkÞz
k ðp ¼ 1; 2; q ¼ 1; 2Þ; ð58Þ

Bpq ¼
Xn

k¼0

bpqðkÞz
�k; B�

pq ¼
Xn

k¼0

bpqðkÞz
k ðp ¼ 1; 2; q ¼ 1; 2Þ: ð59Þ

When the AR and MA coefficients of apqðkÞ and bpqðkÞ can be determined by some scheme
[20,22,23], the auto- and cross-PSDs are numerically computed by Eq. (56), which are,
respectively, given as the diagonal and the non-diagonal elements of SARMAVðz

�1Þ: However, it is
difficult to give analytical consideration on Eq. (56) because of its complex expression. For
instance, the auto- and cross-PSD expressions given by Eq. (56) have the same denominator as D;
therefore, all of the auto- and cross-PSDs have the same poles, which are determined from the
solution of D ¼ 0: This means one cannot analytically separate correlated or uncorrelated
components from two time records. This analytical difficulty is common to all types of
multivariate linear difference models.
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On the other hand, the auto- and cross-PSDs given by the ARMAMA model, as shown in Eqs.
(29) and (47), are simple and one can give a theoretical consideration of spectral analysis more
easily, as stated below. In practice, the physical parameters can be directly obtained from the
coefficients of the PSDs’ expressions, when the relations of both physical and ARMAMA models
have been formulated. Moreover, the difference of each denominator for the auto- and cross-
PSDs helps spectral analysis for correlated two time records, that is, the poles given from
AxðzÞAyðz

�1Þ ¼ 0 correspond to the correlated signals, whereas the poles given from
CxðzÞCxðz

�1Þ ¼ 0 correspond to the uncorrelated signals.
6. Numerical examples

To illustrate the application on the spectral analysis procedure presented in the paper, two
numerical examples are shown. In both examples, sample sequences are simulated as measured
records of mechanical vibration response with colored noises. In the first example (Example 1), a
two degree-of-freedom (2-dof) coupled system is considered; i.e., the responses of each mass have
two common sinusoidal components. In the second example (Example 2) two single-dof systems
driven by a common input are treated; i.e., the responses have a different sinusoidal component to
one another.
To confirm the accuracy of the cross- and the auto-PSD estimates for these examples, the

spectral shapes of the PSDs obtained by the present procedure will be compared with theoretical
ones. Moreover, the authors shall evaluate the eigen properties of both vibration systems and the
colored noise (which has eigen frequency) included in the cross- and auto-PSD estimates.
In the application of the present procedure to these examples, the singular value decomposition

(SVD) procedure [26] is used in the estimation of the AR parameters axðjÞ; ayðjÞ; cxðjÞ and cyðjÞ;
where the small singular values are neglected when the ratio of the singular value to the largest one
is less than 1

100
: The orders of ARMAMA are fixed as mi ¼ ni ¼ m ði ¼ a; b; c; dÞ; and the number

of the YW equations is set to ne ¼ 5m:
6.1. Example 1

6.1.1. Simulation model
The governing equations in this example are given as follows:

System:

€pðtÞ

€qðtÞ

� �
þ

p
5

5 �2

�2 2

 �
_pðtÞ

_qðtÞ

� �
þ 100p2

5 �2

�2 2

 �
pðtÞ

qðtÞ

� �
¼ �

e1ðtÞ

e1ðtÞ

� �
: ð60Þ

Noises:

€�pðtÞ þ 0:12p_�pðtÞ þ 144p2�pðtÞ ¼ �e2ðtÞ; ð61Þ

€�qðtÞ þ 0:08p_�qðtÞ þ 64p2�qðtÞ ¼ �e3ðtÞ: ð62Þ
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Observations:

xðtÞ ¼ ð €pðtÞ þ e1ðtÞÞ þ ð€�pðtÞ þ e2ðtÞÞ; ð63Þ

yðtÞ ¼ ð €qðtÞ þ e1ðtÞÞ þ ð€�qðtÞ þ e3ðtÞÞ; ð64Þ

where pðtÞ and qðtÞ are relative displacement responses of the 2-dof vibration system to the
ground; �pðtÞ and �qðtÞ are colored noises; xðtÞ and yðtÞ are observed outputs; e1ðtÞ; e2ðtÞ and e3ðtÞ
are the mutually independent white noises with zero mean and unit variance;_and€denote the first
and the second derivatives with respect to time t: Fig. 2 shows the vibration system and its
observation models of the example. The physical meaning of the model is that the 2-dof system is
driven by the ground acceleration e1ðtÞ and the observed absolute acceleration responses of xðtÞ

and yðtÞ are €pðtÞ þ e1ðtÞ and €qðtÞ þ e1ðtÞ; which are contaminated by the colored noises €�pðtÞ þ e2ðtÞ
and €�pðtÞ þ e3ðtÞ; respectively.
In the practical sense, the 2-dof system and the colored noises can be identical to an unknown

vibration system of interest and the local mechanical noises due to member vibrations or artificial
mechanical sources, respectively. Then the significant peaks of cross-PSD between two records
can represent the common sinusoidal components, that is, the peaks can be considered as the
modal characteristics of the unknown system.
2
1 300π=k 2

2 200π=k

5
3

1
π=c 5

2
2

π=c

11 =m 12 =m

)(tp )(tq

)(1 te(a)

2−DOF
system

(1 t)e
)(tx

)(ty

)()( 1 tetp +
)()( 1 tetq +

)()( 2 tetp +ε

)() +( 3 tetqε

(b)

Ground
Acceleration

Absolute
Acceleration
Response Observed

Response

Colored Noise
(4Hz)

Colored Noise
(6Hz)

..

..

..

..

Ground Acceleration

Fig. 2. Simulation model of Example 1: (a) system model; (b) observation model.
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Theoretical eigenproperties of the model are shown in Table 1. Here, the relationship between
the jth complex eigenvalue lj and the eigenfrequency f j or the damping factor hj is defined as [17]

2pf j ¼ jljj sign½ImðljÞ	; ð65Þ

hj ¼ cos arg lj: ð66Þ

Here, ImðzÞ denotes the imaginary part of an complex number z; sign[
] denotes signum function
which is defined as

sign½a	 ¼
1; ðaX0Þ;

�1; ðao0Þ:

�
ð67Þ

arg z denotes the argument of a complex number z: Using Eqs. (65) and (66), a pair of conjugate
complex lj and l�j is translated into f j and �f j in eigen frequency, and into the same value hj in
damping factor.
The outputs xðtÞ and yðtÞ have the two modal components whose eigen frequencies are 5Hz and

5
ffiffiffi
6

p
ð� 12:25ÞHz in common. Additionally, the first modal component and the two colored

noises are closely spaced in frequency, while the second modal component and the noises are
widely spaced.
Eqs. (60)–(62) are solved by numerical integration (herein by Runge–Kutta–Gill method),

where the initial conditions are set pð0Þ ¼ _pð0Þ ¼ 0; qð0Þ ¼ _qð0Þ ¼ 0; �pð0Þ ¼ _�pð0Þ ¼ 0 and �qð0Þ ¼
_�qð0Þ ¼ 0; and the time interval Dt ¼ 0:005 s: After that, the samples of output sequences given by
Eqs. (63) and (64) are obtained by resampling them with the time interval Dt ¼ 0:02 s:

6.1.2. Spectral estimation results

Fig. 3 shows the cross-PSD estimates Sxyðf Þ obtained by the present procedure with the order of
the ARMAMA model m ¼ 2; 4; 10; and also obtained by the FFT, where the number of sample
data N ¼ 214: Here, the cross-PSD by the FFT is described as the average of 16 estimates; i.e., the
number of each small sample is set to 210:
Comparing the cross-PSD estimates by the present procedure with the order of the ARMAMA

model, shown in Fig. 3(a)–(c), the cross-PSD with m ¼ 4 shows the best agreement with the
Table 1

The eigenvalues and eigenvectors of Example 1

Eigenvalues Eigenvectors ffpj ;fqjg

Freq. (Hz) Damp.

System

1st mode 5 1/100 f1=2; 1g
2nd mode 5

ffiffiffi
6

p ffiffiffi
6

p
=100 f�2; 1g

Noises

�p 4 5/1000 —

�q 6 5/1000 —
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Fig. 3. Cross-PSD estimates of Example 1, where the number of sample data N ¼ 214: Proposed method with the order
of ARMAMA model: (a) m ¼ 2; (b) m ¼ 4; (c) m ¼ 10; (d) the average over 16 estimates by the FFT method.
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theoretical spectrum in wide frequency range, and the cross-PSD with m ¼ 10 also agrees well
with the theoretical one in amplitude range larger than �20 dB: In contrast with these estimates,
the cross-PSD with m ¼ 2 in Fig. 3(a) is poorly estimated.
Since the poles appear as a pair of conjugates in vibration theory, the 2-dof vibration system in

Eq. (60) has four poles. Thus, for the best cross-PSD estimate shown in Fig. 3(b), the order of the
ARMAMA model equals the number of poles in the cross-PSD between xðtÞ and yðtÞ: Therefore,
from Fig. 3(a)–(c) it can be stated that the order of the ARMAMA model should be larger
than the number of poles in the cross-PSD, to obtain a better cross-PSD estimate. As shown in
Fig. 3(c), the larger order of the ARMAMA model seems to distort the cross-PSD estimate in the
very low amplitude range: e.g., in amplitudes lower than �20 dB in the figure, however, the part of
the cross-PSDs in the higher amplitude range will not be distorted, which often play an important
role in wide engineering field.
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Fig. 4. Auto-PSD estimates by the proposed method in Example 1, where the number of sample data N ¼ 214: The
auto-PSD of (a) xðtÞ and (b) yðtÞ with the order of ARMAMA model m ¼ 4; the auto-PSD of (c) xðtÞ and (d) yðtÞ with

the order of ARMAMA model m ¼ 10:
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On the other hand, the cross-PSD estimate by a conventional method of the FFT, as shown in
Fig. 3(d), has two small peaks around the resonance peak at 5Hz. By using the FFT the
two peaks at 4 and 6Hz do not vanish perfectly, which are caused by the additional colored
noises, whereas in the cross-PSD by the proposed procedure there is no peak of the additional
colored noises.
Fig. 4 shows the associate auto-PSD estimates Sxxðf Þ and Syyðf Þ by the present procedure with

m ¼ 4 and 10, which also describes the theoretical spectra. As shown in Fig. 4(a) and (b), the auto-
PSD estimates Sxxðf Þ and Syyðf Þ show the best agreement with the theoretical spectrum in a wide
frequency range, when the order of the ARMAMA model is equal to m ¼ 4: Also, two auto-PSD
estimates Sxxðf Þ and Syyðf Þ with m ¼ 10; shown in Fig. 4(c) and (d), agree with the theoretical one,
except lower amplitude range than �20 dB:
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According to these results on the cross- and auto-PSD estimates, by using the proposed
procedure, both correlated signal and uncorrelated noises can be well-separately identified from
the two output sequences even when the signal and noises are closely spaced.
6.1.3. Eigenproperty estimation results
The advantage of parametric spectral estimations such as the present procedure is that physical

parameters can directly be obtained from coefficients of the spectral estimates when the
relationships between the physical parameters and the spectral estimates have been formulated.
To investigate the aforementioned result of the cross- and auto-PSDs in more detail, the
eigenproperties estimated from the coefficients of cross- and auto-PSDs will be confirmed. Before
investigating in detail, the authors will show the procedure where the eigen properties can be
estimated from the cross- and auto-PSDs shown in Fig. 3(c) and Fig. 4(c) and (d).
The eigenproperty estimates associated with AxðzÞ ¼ 0 and Ayðz

�1Þ ¼ 0 are shown in Tables 2
and 3. Here, the poles are translated into the eigenfrequencies and damping factors by Eqs. (65)
and (66); the residues gxy and bxy are calculated from the cross-PSD estimate Sxyðz

�1Þ associated
with the pole in AxðzÞ ¼ 0 and in Ayðz

�1Þ ¼ 0; the residues gxx and byy are calculated from the
auto-PSD estimates Sxxðz

�1Þ and Syyðz
�1Þ:

Comparing Tables 2 and 3 with Table 1, the No. 1–4 eigenparameter estimates seem to be
related to the vibration system. For the No. 5–10 estimates, on the other hand, the physical
meaning cannot be clear. When the order of the ARMAMAmodel is set to be larger than the true
order of the physical model (as in this example, where the order of the mechanical system equals 4,
and the order of the ARMAMA model is set to 10), not only substantial poles but also spurious
poles appear. However, the substantial poles such as the No. 1–4 estimates appear as a pair of
Table 2

Eigenparameter estimates obtained from AxðzÞ in Example 1, where the number of sample data is N ¼ 214; the order of
ARMAMA model is m ¼ 10

No. Pole Residue gxy=gxx

Frequency (Hz) Damping (%) jgxyj ðgal
2
Þ jgxxj ðgal

2
Þ Absolute ð
Þ Phase (deg)

1 4.99 1.00 291.5 582.7 0.500 �1.7

2 �4.99 1.00 291.5 582.7 0.500 1.7

3 12.25 2.55 30.4 15.8 1.929 �170.3

4 �12.25 2.55 30.4 15.8 1.929 170.3

5 18.22 13.05 1.0 43.4 0.024 �144.2

6 �18.22 13.05 1.0 43.4 0.024 144.2

7 23.10 14.36 2.2 532.4 0.004 �107.2

8 �23.10 14.36 2.2 532.4 0.004 107.2

9 2.28 100.00 5.0 38.1 0.131 0.0

10 36.52 72.90 13.3 13954.2 0.000 0.0

Here, gxy and gxx are the residues of the cross-PSD Sxyðz
�1Þ and the auto-PSD Sxxðz

�1Þ; which correspond to the poles
in AxðzÞ ¼ 0:
ðgalÞ ¼ ðcm=s2Þ: unit of acceleration.
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Table 3

Eigen parameter estimates obtained from Ayðz
�1Þ in Example 1, where the number of sample data is N ¼ 214; the order

of ARMAMA model is m ¼ 10

No. Pole Residue byy=bxy

Frequency (Hz) Damping (%) jbxyj ðgal
2
Þ jbyyj ðgal

2
Þ Absolute ð
Þ Phase (deg)

1 4.99 0.98 294.4 148.1 0.503 �2.2

2 �4.99 0.98 294.4 148.1 0.503 2.2

3 12.24 2.47 30.3 60.9 2.007 �171.8

4 �12.24 2.47 30.3 60.9 2.007 171.8

5 18.21 13.04 3.3 18.6 5.674 �60.9

6 �18.21 13.04 3.3 18.6 5.674 60.9

7 23.10 14.33 8.2 63.6 7.749 �17.5

8 �23.10 14.33 8.2 63.6 7.749 17.5

9 �2.27 100.00 9.7 10.3 1.068 180.0

10 36.02 71.99 699.3 2637.5 3.772 0.0

Here, bxy and byy are the residues of the cross-PSD Sxyðz
�1Þ and the auto-PSD Syyðz

�1Þ; which correspond to the poles
in Ayðz

�1Þ ¼ 0:
ðgalÞ ¼ ðcm=s2Þ: unit of acceleration.
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conjugates, and the associated residues gxy and bxy have significantly large absolute value;
therefore, by using these characteristics of substantial poles, one can eliminate the spurious poles
from all the poles in practice.
Similarly, Table 4 shows the eigenproperty estimates associated with Cxðz

�1Þ and Cyðz
�1Þ:Here,

the residues zx and zy are calculated from the auto-PSD estimates Sxxðz
�1Þ and Syyðz

�1Þ; which
correspond to the poles in Cxðz

�1Þ ¼ 0 and Cyðz
�1Þ ¼ 0: Comparing Table 4 with Table 1, the No.

1 and 2 estimates of Cxðz
�1Þ and Cyðz

�1Þ seem to be related to the additional noises. The poles of
these estimates appear as a pair of conjugates, and the associated residues become rather large in
absolute value. The characteristics for the pole and residue tend to be similar to those in AxðzÞ ¼ 0
and Ayðz

�1Þ ¼ 0: Therefore, one can also identify the properties of considerable noises in the same
manner as in AxðzÞ and Ayðz

�1Þ:
According to the above considerations, accuracy of the eigenproperty estimates is investigated

with the length of the sample data, when the order of the ARMAMA model is fixed to m ¼ 10:
Tables 5 and 6 show eigenproperty estimates of the vibration system and the noises obtained by
the cross- and auto-PSDs with the different lengths of sample data. Here, in Table 5 the estimates
of poles or residues from AxðzÞ ¼ 0 and Ayðz

�1Þ ¼ 0 are shown at the upper and lower rows in the
cells, respectively. As shown in the table, the estimates for each eigenparameter converge to the
true values with increasing data length. In the practical sense, the length of sample data is required
over 214 or more for the accurate eigenproperty estimation.
In turn, an influence of the eigenproperty estimates on the order of the ARMAMA model will

be investigated, when the length of sample data is fixed to N ¼ 214: Fig. 5 shows stabilization
diagrams [27], where the eigenproperty estimates of the 2-dof system change with changing the
order of the ARMAMA model m: As shown in the figure, each eigenproperty estimate rapidly
converges with increasing the order m; and equals the true value when the order m is set to over 4.
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Table 4

Eigen parameter estimates obtained from Cxðz
�1Þ and Cyðz

�1Þ in Example 1, where the number of sample data is

N ¼ 214; the order of ARMAMA model is m ¼ 10

No. Cxðz
�1Þ Cyðz

�1Þ

Pole Residue jzxj ðgal
2
Þ Pole Residue jzyj ðgal

2
Þ

Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

1 6.00 0.46 1055.6 3.99 0.67 472.1

2 �6.00 0.46 1055.6 �3.99 0.67 472.1

3 11.92 16.60 10.4 10.25 15.49 1.2

4 �11.92 16.60 10.4 �10.25 15.49 1.2

5 17.05 15.92 54.6 15.28 12.40 7.2

6 �17.05 15.92 54.6 �15.28 12.40 7.2

7 22.34 14.99 504.8 20.20 10.06 13.5

8 �22.34 14.99 504.8 �20.20 10.06 13.5

9 �1.12 100.00 13.2 5.33 100.00 62.8

10 �26.22 30.14 3222.8 25.09 8.27 16.8

Here, zx and zy are the residues of the auto-PSD Sxxðz
�1Þ and Syyðz

�1Þ; which correspond to the poles in Cxðz
�1Þ ¼ 0

and Cyðz
�1Þ ¼ 0; respectively.

ðgalÞ ¼ ðcm=s2Þ: unit of acceleration.
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Therefore, the present procedure gives the accurate estimate when the order is selected to over the
number of the poles in the cross-PSD. Practically, the true number of poles in a cross-PSD may
not be known; however, the eigenproperties can be determined from the estimates by the present
procedure, which are constant with successive orders of ARMAMA model.

6.2. Example 2

6.2.1. Simulation model
The equations of a vibration system are given as

System:

€pðtÞ

€qðtÞ

� �
þ

p
5

1 0

0 6

 �
_pðtÞ

_qðtÞ

� �
þ 100p2

1 0

0 6

 �
pðtÞ

qðtÞ

� �
¼ �

e1ðtÞ

e1ðtÞ

� �
: ð68Þ

The same equations for noises and observations are used as in Example 1. The samples of
output sequences xðtÞ and yðtÞ are generated by the same procedure as in Example 1.
Fig. 6 shows the vibration system and its observation models of the example. Theoretical

eigenproperties of the model are shown in Table 7. In this example, the two outputs have no
common modal components; i.e., each output xðtÞ and yðtÞ has only one modal component whose
eigenfrequency is 5Hz and 5

ffiffiffi
6

p
ð� 12:25ÞHz; respectively. In a similar way as in Example 1, the

first modal component and the dominant frequency of two colored noises are closely spaced in
frequency range, while the second modal component and the dominant frequency of the noises are
widely spaced.
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Table 5

Estimated eigenproperties for the frequencies f 1; f 2; the damping coefficients h1; h2 and the modal amplitude ratio
fp1=fq1;fp2=fq2 in Example 1, where the order of ARMAMA model is m ¼ 10

N 1st Mode 2nd Mode

f 1 (Hz) h1 (%) jgxy=gxxj ð
Þ f 2 (Hz) h2 (%) jbxy=byyj ð
Þ

210 5.19 6.14 0.525 12.42 3.46 2.537

4.78 5.54 0.421 12.46 3.60 1.711

212 4.99 1.60 0.507 12.27 3.51 1.769

5.01 1.44 0.536 12.27 3.43 1.970

214 4.99 1.00 0.500 12.25 2.55 1.929

4.99 0.99 0.503 12.24 2.47 2.007

216 5.00 1.01 0.501 12.24 2.48 2.011

5.00 1.00 0.501 12.25 2.40 1.989

218 5.00 1.00 0.500 12.25 2.46 1.998

5.00 1.00 0.501 12.25 2.45 1.994

220 5.00 1.00 0.503 12.25 2.47 1.996

5.00 1.00 0.501 12.25 2.47 1.997

True 5.00 1.00 0.500 12.25 2.45 2.000

The upper and lower values in each cell of each row are obtained from AxðzÞ ¼ 0 and Ayðz
�1Þ ¼ 0 in the each dataset,

respectively.

N denotes the number of the data length.

jbxy=byyj and jgxy=gxxj denote the absolute values of the residue ratio of the cross-PSD to the auto-PSD.

Table 6

Estimated noise properties for the frequencies f p; f q and the damping coefficients hp; hq in Example 1, where the order

of ARMAMA model is m ¼ 10

N Noise �p Noise �q

f p (Hz) hp (%) f q (Hz) hq (%)

210 6.00 1.19 4.01 0.57

212 6.00 0.44 4.00 0.92

214 6.00 0.46 3.99 0.67

216 6.00 0.56 4.00 0.62

218 6.00 0.52 4.00 0.52

220 6.00 0.49 4.00 0.51

True 6.00 0.50 4.00 0.50

N denotes the number of the data length.
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Fig. 5. Comparisons of eigenparameter estimates of Example 1 with the order of ARMAMA model, where the number

of sample data N ¼ 214: (a) The 1st frequency estimates, (b) the 1st damping factor estimates, (c) the 2nd frequency

estimates, and (d) the 2nd damping factor estimates.
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6.2.2. Spectral estimation results

Fig. 7 shows the cross-PSD estimates Sxyðf Þ obtained by the present procedure and the FFT,
where the lengths of sample data are N ¼ 214; 216 and 218; respectively. In the use of the FFT, the
number of the sample in each estimate is 210; and the cross-PSDs by the FFT are given as the
average of 16 ð¼ 24Þ; 64 ð¼ 26Þ and 256 ð¼ 28Þ estimates in each case.
As shown in Fig. 7(a), (c) and (e), it is apparent that the proposed procedure gives good results

when the data length of the sample sequences is large enough . It is because the cross-correlation
function can be well estimated from the long sample data, shown in Fig. 8.2

Similarly to the present procedure, by the FFT the cross-PSD accuracy increases with larger
length of sample data, shown in Fig. 7(b), (d) and (f). Comparing both cross-PSD estimates by the
2The poles in AxðzÞ ¼ 0 and in Ayðz
�1Þ ¼ 0 are estimated from RxyðtÞ in to0 and in t40; respectively.
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Fig. 6. Simulation model of Example 2: (a) system model, (b) observation model.

Table 7

The eigenvalues and eigenvectors of Example 2

Eigenvalues Eigenvectors ffp;fqg

Freq. (Hz) Damp.

System

1st mode 5 1/100 f1; 0g
2nd mode 5

ffiffiffi
6

p ffiffiffi
6

p
=100 f0; 1g

Noises

�p 4 5/1000 —

�q 6 5/1000 —
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present procedure and the FFT within the same length of sample data, the present procedure gives
better cross-PSD estimates to remove the additional noise peaks than the FFT method: e.g.,
according to Fig. 7 the noise peaks in (c) or (e) are lower than those in (d) or (f).
As shown in Fig. 9, the auto-PSD estimates Sxxðf Þ and Syyðf Þ are also in good agreement with

the theoretical spectra, associated with the cross-PSD obtained from the sample of the data length
N ¼ 216:

6.2.3. Eigenproperty estimation results
Furthermore, to investigate the accuracy of the cross- and auto-PSD estimates by the present

procedure, the eigenproperties of the vibration system and the noises are evaluated as shown in
Tables 8 and 9. Here, the gxy=gxx and bxy=byy are the residue ratios of the cross-PSD to the auto-
PSD, whose theoretical values are solved by Eqs. (68), (61)–(64) analytically. The eigenproperty
estimates converge to the true values as shown in Table 7 with increasing length of the sample
data. In practical sense, the number of the sample data required is over 216 or more, which is
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Fig. 7. Cross-PSD estimates of Example 2. Proposed method estimates with the order of ARMAMA model m ¼ 10;
where the number of the sample data: (a) N ¼ 214; (c) N ¼ 216; (e) N ¼ 218: FFT method estimates where the number of
the sample data: (b) N ¼ 214; (d) N ¼ 216; (f) N ¼ 218:
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Fig. 8. Cross-correlation functions of xðtÞ and yðtÞ in Example 2, used for the cross-spectrum estimates. The number of

the sample data is (a) N ¼ 214; (b) N ¼ 216; (c) N ¼ 218 and (d) N ¼ 1 (in theory).
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larger than that in Example 1. The reason is that in Example 2 the two outputs xðtÞ and yðtÞ have
no common sinusoidal components; i.e., in the frequency range near 5Hz xðtÞ has the dominant
component while yðtÞ has no dominant component; and vice versa in the frequency range near
12Hz. In such a case, it is difficult to obtain an accurate cross-correlation estimate when the data
length of the sample is rather small.
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Fig. 9. Auto-PSD estimates of (a) xðtÞ and (b) yðtÞ in Example 2, where the number of the sample data is N ¼ 216; the
order of each model is m ¼ 10:

Table 8

Estimated eigen properties for the frequencies f 1; f 2; the damping coefficients h1; h2 and the modal amplitude ratio

fp1=fq1; fp2=fq2 in Example 2, where the order of ARMAMA model is m ¼ 10

N 1st Mode 2nd Mode

f 1 (Hz) h1 (%) jgxy=gxxj ð
Þ f 2 (Hz) h2 (%) jbxy=byyj ð
Þ

210 5.63 8.42 0.092 12.45 1.48 0.029

212 4.88 2.16 0.070 12.40 2.88 0.032

214 4.94 3.40 0.041 12.34 2.88 0.032

216 5.01 1.19 0.046 12.25 2.36 0.020

218 5.01 1.17 0.044 12.26 2.45 0.020

220 5.00 0.94 0.048 12.25 2.48 0.019

True 5.00 1.00 0.048 12.25 2.45 0.020

The poles of the first and second modes were obtained by AxðzÞ ¼ 0 and Ayðz
�1Þ ¼ 0 respectively.

N denotes the number of the data length.

jbxy=byyj and jgxy=gxxj denote the absolute values of the residue ratio of the cross-PSD to the auto-PSD.
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7. Application to real-life record

To demonstrate the practicality of the present spectral procedure, vibration records of a 10-
story office building against strong wind have been analyzed. Generally, in observation of wind
responses, one can obtain the response at some parts of a building and wind records near the
building; however, one cannot exactly measure wind forces acting on the building. In such a case,
the system identification based on an input–output relationship cannot be employed any longer,
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Table 9

Estimated noise properties for the frequencies f p; f q and the damping coefficients hp; hq in Example 2, where the order

of ARMAMA model is m ¼ 10

N Noise �p Noise �q

f p (Hz) hp (%) f q (Hz) hq (%)

210 6.00 1.35 4.03 0.45

212 6.00 0.42 4.00 0.65

214 6.00 0.44 3.99 0.67

216 6.00 0.56 4.00 0.66

218 6.00 0.52 4.00 0.52

220 6.00 0.49 4.00 0.51

True 6.00 0.50 4.00 0.50

N denotes the number of the data length.

Accelerometers were installed at the Roof and the 6th Floors.

22 meters

22
m

et
er

s

N

Thick shear walls

Column

(a) (b)

Fig. 10. A steel reinforced concrete building: (a) overviews; (b) plan and sensor location.
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and the cross-spectrum-based technique should be effective to analyze the dynamic characteristics
of the existing building.
Fig. 10 shows the office building, which is a steel reinforced concrete structure, and the sensor

location. In this practice, two accelerometers on the east–west directions were used, which were
installed at the roof and the 6th floor. The measuring was conducted when the 21st typhoon in
2002 passed through the building from October 1 to 2, 2002. The records were obtained for 24 h
with the sampling period 24Hz, and all records are divided into 144 sample segments by every
10min to analyze the response of the building in frequency range; the number of each sample
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segment equals 14,400. Hereafter, the vibration records at the roof and the 6th floor are treated as
xðtÞ and yðtÞ; respectively.
Fig. 11 shows the wind record near the building and variances of the two vibration records.

Here, the wind record for every 1 h was obtained at the weather observation station of the Japan
Meteorological Agency [28], which is located very close to the building, and the variances of the
vibration record were calculated for every 10min. At 9 p.m., the eye of the 21st typhoon passed
above the building toward the east–northeast direction. Around this time, both the wind velocity
and the amplitudes of the building response are large. This means, with the approach of the
typhoon, the wind became strong and the vibration level of the building became large. Moreover,
at 9 p.m., the wind direction suddenly changed and the building response became quite small for a
moment. As the building was within the eye of the typhoon, the wind load acting on the building
became quite small, thus the response of the building also became quite small. In Fig. 11(b), the
wind velocity record at 9 p.m., does not seem to be quite small due to low time resolution (hourly
averaged value).
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Fig. 11. Wind observation records averaged for every 1 h and variances of the building response records in every

10min: (a) wind direction; (b) wind velocities; (c) variances of the response.
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For 144 sample segments, the spectral analysis is conducted by using the present procedure and
the FFT. In the use of the present procedure, the order of the ARMAMA model is set to 20, to
converge the spectral form with changing the order. The other calculation condition is the same as
in the previous section. On the other hand, in the use of the FFT, after the sample segments are
divided into 14 small samples with no overlapping, the final PSD results are described as the
average of 14 PSD estimates of the small samples; e.g., the number of the small samples is
set to 210:
Fig. 12 shows examples of the cross- and auto-PSD estimated from the weak wind records and

the strong wind records, where the weak and strong wind records are corresponding to the Data A
and Data B shown in Fig. 11, respectively. In both wind conditions, the present procedure gives
the average results of the cross- and auto-PSD by the FFT. Especially, the two resonance peaks of
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Fig. 12. Spectrum forms of the experimental records estimated by the proposed method and FFT, where the number of

sample data N ¼ 14; 400; (a) cross-PSD of records for weak wind; (b) cross-PSD of records for strong wind; (c) auto-

PSD of records for weak wind; (d) auto-PSD of records for strong wind, where the records for weak and strong winds

are the Data A and Data B shown in Fig. 11(c), respectively.



ARTICLE IN PRESS

1.95

2.00

2.05

F
re

qu
en

cy
 [

H
z]

Time [Hour]
Oct.1 Oct.2

9 12 15 18 21 0 3 6 9

Average by weak wind recrods

Results by A
x
(z-1)=0

Results by A
y
(z-1)=0

The 21st typhoon passed by the site.

0.00
0.01

0.02
0.03

0.04

0.05

D
am

pi
ng

 F
ac

to
r

Oct.1 Oct.2
9 12 15 18 21 0 3 6 9

Results by A
x
(z-1)=0

Results by A
y
(z-1)=0

The 21st typhoon passed by the site.

Average by weak wind recrods

(a)

(b) Time [Hour]

Fig. 13. The first eigenproperties of the building estimated by the proposed method for every 10min records, which are

shown as the first peak in Fig. 12: (a) nature frequency; (b) damping factor.
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2.0 and 2.8Hz can be extracted sharply whether or not the wind affects the response of the
building, which correspond to the dynamic characteristics of the building.
Of two resonance peaks, the first peak of 2.0Hz will be investigated in detail. Fig. 13 shows time

fluctuations of the natural frequency and the damping factor, which are calculated from the first
peak of cross-PSDs by using the relation of poles and eigenvalues in Eqs. (65) and (66). As shown
in Figs. 11 and 13, the vibrational amplitude dependency of the eigenvalues have been observed:
e.g. with increasing wind velocity and the response of the building, the natural frequency tends to
decrease, whereas the damping factor tends to increase. In this way, the physical parameters are
directly estimated from the identified forms of cross-PSDs.
8. Conclusion

The spectral analysis procedure of the cross- and auto-PSDs is presented using a pair of
ARMAMAmodels as two observable outputs. In the procedure, firstly the cross-PSD is estimated
from the observed cross-correlation function of the two outputs. Then the auto-PSD can be
obtained from the observed auto-correlation and the parameter estimates of the cross-PSD. By
using the proposed procedure, the cross- and auto-PSD estimates are given as the forms of the
rational polynomial equations. Thus, not only are the spectral shapes of the PSDs obtained, but
also the physical parameters can easily be translated from the parameters of the PSD estimates.
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In the application of the proposed procedure, the cross-correlation function plays an important
role in the cross-PSD estimates. Therefore, the cross-correlation function should be as accurate as
possible; that is, it should be estimated from the observed outputs whose data lengths are large
enough. Once the cross-PSD is estimated, the associated auto-PSD can also be obtained
accurately, because the auto-correlation functions can generally be estimated more accurately
than those of cross-correlation functions.
In this paper, the schemes are shown for two observed records; however, it can be easily

extended to the schemes for multivariate records, because in such multivariate cases the proposed
procedure can be applied to combine a pair of every two records repetitively. Additionally,
though the paper only shows a general type of ARMAMA model, it can be effective to
rewrite the model into a simple form for some engineering problems. For example, for system
identification of a coupled system such as Example 1 in Section 5.1, the two ARMAMAmodels in
Eqs. (3) and (5) can be assumed to have the same AR terms of the denominator in the first terms,
that is, the assumption of Axðz

�1Þ ¼ Ayðz
�1Þ can be introduced. The proposed parametric

estimation of the cross- and auto-PSD will be widely employed in many kinds of engineering
problems.
Appendix A. Correlation functions

The instrumental variables uðtÞ and vðtÞ defined in Eqs. (23) and (24) can be expressed by using
the impulse responses as follows:

uðtÞ ¼
X1
j¼0

hdxðjÞexðt � jÞ; ðA:1Þ

vðtÞ ¼
X1
j¼0

hdyðjÞeyðt � jÞ: ðA:2Þ

The cross correlation RxvðtÞ between xðtÞ and vðtÞ is given using Eqs. (16) and (A.2):

RxvðtÞ ¼ E½xðtÞ vðt þ tÞ	

¼
X1
j¼0

X1
k¼0

hbxðjÞhdyðkÞE½eðt � jÞeyðt þ t� kÞ	

þ
X1
j¼0

X1
k¼0

hdxðjÞhdyðkÞE½exðt � jÞeyðt þ t� kÞ	

¼ 0: ðA:3Þ

The cross correlation RyuðtÞ between yðtÞ and uðtÞ is given by Eqs. (17) and (A.1):

RyuðtÞ ¼ E½yðtÞ uðt þ tÞ	
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¼
X1
j¼0

X1
k¼0

hbyðjÞhdxðkÞE½eðt � jÞexðt þ t� kÞ	

þ
X1
j¼0

X1
k¼0

hdyðjÞhdxðkÞE½eyðt � jÞexðt þ t� kÞ	

¼ 0: ðA:4Þ

The cross correlation RuvðtÞ between uðtÞ and vðtÞ is given by Eqs. (A.1) and (A.2):

RuvðtÞ ¼ E½uðtÞ vðt þ tÞ	

¼
X1
j¼0

X1
k¼0

hdxðjÞhdyðkÞE½exðt � jÞeyðt þ t� kÞ	

¼ 0: ðA:5Þ

The cross correlation RxeðtÞ between xðtÞ and eðtÞ is given by Eq. (16):

RxeðtÞ ¼ E½xðtÞ eðt þ tÞ	

¼
X1
j¼0

hbxðjÞE½eðt � jÞeðt þ tÞ	

þ
X1
j¼0

hdxðjÞE½exðt � jÞeðt þ tÞ	

¼ hbxð�tÞ: ðA:6Þ

The cross correlation RyeðtÞ between yðtÞ and eðtÞ is given by Eq. (17):

RyeðtÞ ¼ E½yðtÞ eðt þ tÞ	

¼
X1
j¼0

hbyðjÞE½eðt � jÞeðt þ tÞ	

þ
X1
j¼0

hdyðjÞE½eyðt � jÞeðt þ tÞ	

¼ hbyð�tÞ: ðA:7Þ

The cross correlation Rxex
ðtÞ between xðtÞ and exðtÞ is given by Eq. (16):

Rxex
ðtÞ ¼ E½xðtÞ exðt þ tÞ	

¼
X1
j¼0

hbxðjÞE½eðt � jÞexðt þ tÞ	

þ
X1
j¼0

hdxðjÞE½exðt � jÞexðt þ tÞ	

¼ hdxð�tÞ: ðA:8Þ
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